skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "O’Neal, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. IntroductionEffective monitoring of insect-pests is vital for safeguarding agricultural yields and ensuring food security. Recent advances in computer vision and machine learning have opened up significant possibilities of automated persistent monitoring of insect-pests through reliable detection and counting of insects in setups such as yellow sticky traps. However, this task is fraught with complexities, encompassing challenges such as, laborious dataset annotation, recognizing small insect-pests in low-resolution or distant images, and the intricate variations across insect-pests life stages and species classes. MethodsTo tackle these obstacles, this work investigates combining two solutions, Hierarchical Transfer Learning (HTL) and Slicing-Aided Hyper Inference (SAHI), along with applying a detection model. HTL pioneers a multi-step knowledge transfer paradigm, harnessing intermediary in-domain datasets to facilitate model adaptation. Moreover, slicing-aided hyper inference subdivides images into overlapping patches, conducting independent object detection on each patch before merging outcomes for precise, comprehensive results. ResultsThe outcomes underscore the substantial improvement achievable in detection results by integrating a diverse and expansive in-domain dataset within the HTL method, complemented by the utilization of SAHI. DiscussionWe also present a hardware and software infrastructure for deploying such models for real-life applications. Our results can assist researchers and practitioners looking for solutions for insect-pest detection and quantification on yellow sticky traps. 
    more » « less
  2. Abstract Insect pests significantly impact global agricultural productivity and crop quality. Effective integrated pest management strategies require the identification of insects, including beneficial and harmful insects. Automated identification of insects under real-world conditions presents several challenges, including the need to handle intraspecies dissimilarity and interspecies similarity, life-cycle stages, camouflage, diverse imaging conditions, and variability in insect orientation. An end-to-end approach for training deep-learning models, InsectNet, is proposed to address these challenges. Our approach has the following key features: (i) uses a large dataset of insect images collected through citizen science along with label-free self-supervised learning to train a global model, (ii) fine-tuning this global model using smaller, expert-verified regional datasets to create a local insect identification model, (iii) which provides high prediction accuracy even for species with small sample sizes, (iv) is designed to enhance model trustworthiness, and (v) democratizes access through streamlined machine learning operations. This global-to-local model strategy offers a more scalable and economically viable solution for implementing advanced insect identification systems across diverse agricultural ecosystems. We report accurate identification (>96% accuracy) of numerous agriculturally and ecologically relevant insect species, including pollinators, parasitoids, predators, and harmful insects. InsectNet provides fine-grained insect species identification, works effectively in challenging backgrounds, and avoids making predictions when uncertain, increasing its utility and trustworthiness. The model and associated workflows are available through a web-based portal accessible through a computer or mobile device. We envision InsectNet to complement existing approaches, and be part of a growing suite of AI technologies for addressing agricultural challenges. 
    more » « less
  3. Abstract The soybean aphid, Aphis glycines (Hemiptera: Aphididae), is an invasive pest that can cause severe yield loss to soybeans in the North Central United States. A tactic to counter this pest is the use of aphid-resistant soybean varieties. However, the frequency of virulent biotypes that can survive on resistant varieties is expected to increase as more farmers use these varieties. Soybean aphids can alter soybean physiology primarily by two mechanisms, feeding facilitation, and the obviation of resistance, favoring subsequent colonization by additional conspecifics. We developed a nonlocal, differential equation population model to explore the dynamics of these biological mechanisms on soybean plants coinfested with virulent and avirulent aphids. We then use demographic parameters from laboratory experiments to perform numerical simulations via the model. We used this model to determine that initial conditions are an important factor in the season-long cooccurrence of both biotypes. The initial population of both biotypes above the resistance threshold or avirulent aphid close to resistance threshold and high virulent aphid population results in coexistence of the aphids throughout the season. These simulations successfully mimicked aphid dynamics observed in the field- and laboratory-based microcosms. The model showed an increase in colonization of virulent aphids increases the likelihood that aphid resistance is suppressed, subsequently increasing the survival of avirulent aphids. This interaction produced an indirect, positive interaction between the biotypes. These results suggest the potential for a ‘within plant’ refuge that could contribute to the sustainable use of aphid-resistant soybeans. 
    more » « less